Photodynamic Alteration of Sodium Currents in Lobster Axons
نویسنده
چکیده
Photodynamic alteration of lobster giant axons drastically changed the magnitude and kinetics of sodium currents seen under voltage clamp using the sucrose gap technique. Illumination of axons following treatment with acridine orange or eosin Y decreased the maximum sodium conductance to a zero asymptote as an exponential function of illumination time. Normal sodium inactivation was slowed, with tau(h) more than doubled depending on experimental conditions. A second slower inactivation rate developed occasionally. tau(h) was altered little, if at all. Sodium current "tails" were not prolonged. At maximum light intensity and with eosin Y as sensitizer leakage current increased after 4-10 sec in light. These changes were irreversible. Decreases in maximum sodium conductance correlated highly with increases in time to peak sodium current. The magnitude of change varied linearly with light intensity. The action spectra for eosin Y and acridine orange peaked near 545 and 505 nm, respectively. The magnitude of change varied with preillumination dye exposure time in a quasi-exponential approach to a maximum effect. Sodium dithionite protected the axon from photodynamic change.
منابع مشابه
Selective modification of sodium channel gating in lobster axons by 2, 4, 6-trinitrophenol: Evidence for two inactivation mechanisms
Trinitrophernol (TNP) selectively alters the sodium conductance system of lobster giant axons as measured in current clamp and voltage clamp experiments using the double sucrose gap technique. TNP has no measurable effect on potassium currents but reversibly prolongs the time-course of sodium currents during maintained depolarizations over the full voltage range of observable currents. Action p...
متن کاملBarbiturates Block Sodium and Potassium Conductance Increases in Voltage-Clamped Lobster Axons
Sodium pentobarbital and sodium thiopental decrease both the peak initial (Na) and late steady-state (K) currents and reduce the maximum sodium and potassium conductance increases in voltage-clamped lobster giant axons. These barbiturates also slow the rate at which the sodium conductance turns on, and shift the normalized sodium conductance vs. voltage curves in the direction of depolarization...
متن کاملTetrodotoxin Blockage of Sodium Conductance Increase in Lobster Giant Axons
Previous studies suggested that tetrodotoxin, a poison from the puffer fish, blocks conduction of nerve and muscle through its rather selective inhibition of the sodium-carrying mechanism. In order to verify this hypothesis, observations have been made of sodium and potassium currents in the lobster giant axons treated with tetrodotoxin by means of the sucrose-gap voltage-clamp technique. Tetro...
متن کاملNeurodynamic control of the heart of freely moving spiny lobster (Panulirus japonicus)
The heart of the crustaceans has its own pacemaker neurons inside the heart, which are composed of 9 neurons. The neurons receive innervations of only three kinds of axons originated from the central nervous system; one pair of inhibitory and two pairs of acceleratory axons. Thus, in terms of the neural cardiac control from higher center, this system may have much more simplistic operation comp...
متن کاملNeurodynamic control of the heart of freely moving spiny lobster (Panulirus japonicus)
The heart of the crustaceans has its own pacemaker neurons inside the heart, which are composed of 9 neurons. The neurons receive innervations of only three kinds of axons originated from the central nervous system; one pair of inhibitory and two pairs of acceleratory axons. Thus, in terms of the neural cardiac control from higher center, this system may have much more simplistic operation comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 60 شماره
صفحات -
تاریخ انتشار 1972